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Beyond Group: Multiple Person Tracking
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Abstract— Tracking multiple persons is a challenging task
when persons move in groups and occlude each other. Exist-
ing group-based methods have extensively investigated how to
make group division more accurately in a tracking-by-detection
framework; however, few of them quantify the group dynamics
from the perspective of targets’ spatial topology or consider the
group in a dynamic view. Inspired by the sociological properties
of pedestrians, we propose a novel socio-topology model with a
topology-energy function to factor the group dynamics of moving
persons and groups. In this model, minimizing the topology-
energy-variance in a two-level energy form is expected to produce
smooth topology transitions, stable group tracking, and accurate
target association. To search for the strong minimum in energy
variation, we design the discrete group-tracklet jump moves
embedded in the gradient descent method, which ensures that
the moves reduce the energy variation of group and trajectory
alternately in the varying topology dimension. Experimental
results on both RGB and RGB-D data sets show the superiority
of our proposed model for multiple person tracking in crowd
scenes.

Index Terms— Multiple person tracking, group tracking,
RGB-D data, topology.

I. INTRODUCTION

MULTIPLE person Tracking is a fundamental problem
in computer vision, contributing to many applications

including robotics, video surveillance, and intelligent vehi-
cles [1]. While many researchers consider multiple person
tracking in simple scenes a solved problem, in crowded scenes
it remains a very challenging problem when considering
complex target dynamics and occlusions. Conventional data
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association methods that link target detections with respect to
their appearance, motion, and time gap have been intensively
investigated. Modeling complex target dynamics and handling
occlusions in crowds; however, are often beyond the scope of
their capability.

To model the complex dynamics of moving persons, social
behaviour analysis [2], [3] have recently been explored. Soci-
ologists [4] find that up to 70% of the persons in a crowd tend
to walk in groups. Persons in the same group are more likely to
have similar motion patterns and to be close to each other for
a better group interaction. This grouping view treats persons’
motion as the result of both their attention and the interactions
with the environment. Corresponding tracking models [5]–[9]
divide the detections with similar motion patterns into groups
and minimize the in-group energy. The recent trend towards
group division and group tracking have mitigated the occlusion
problem in multiple person tracking to an extent, but the group
dynamics remains not being quantified in a principled way.
This challenge opens space for new techniques that cope with
multiple person tracking, behaviour analysis, or both.

In multiple person tracking, group dynamics refer to person
and group events, i.e., person leaving and joining, group
merging and splitting, that substantially modify the target
spatial distribution and group configuration. From a socio-
logical perspective [10], when an individual leaves a group
(split) or joins a group (merge), the social relationships among
the remaining persons are revised so that the individuals
produce new entities. One extreme example is that persons
frequently jump among different groups and introduce frequent
group splitting and merging, as well as serious occlusions.
Under these circumstances the heterogeneity nature of differ-
ent groups and many factors, such as individual characteristics,
group size, relationships among groups, and influences among
group members, need to be investigated.

In this paper, our motivation is to describe topology relation
of the persons and groups in a global way. The “topology” is
defined in a social context, i.e., to present the relation of per-
sons both in and out of a group. We investigate the spatial and
temporal change of the intra- and inter-groups from a socio-
topology view, which is higher than the conventional group-
level multiple persons tracking methods. The latter ones focus
mainly on how to find the similar motion behavior among
the tracklets of persons, while the relation among groups is
seldom investigated. In our model, the spatial relationships
of targets and groups are characterized with intra-group and
inter-group structures. The intra-group structure characterizes
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Fig. 1. Illustration of proposed topology-energy model. (a) Multiple person
tracking results, where each target is marked with a 3D bounding box.
(b) Tracklets of persons in (a). Each node together with an arrow denotes
a tracklet with an orientation. (c) Topology configurations corresponding
to persons. Each color indicates a group. (d) Energy distribution of the
topology.

the connections among the targets inside a group while the
inter-group structure models the influence among different
groups. To quantify the dynamics, we propose a topology
energy function (cf. Fig. 1). The typical spatial patterns are
off-line learned in different densities on large-scale datasets
to accurately characterize such topology-energy distribution.
Minimizing the topology-energy-variance via a group-tracklet
jump-moves strategy is expected to produce smooth topology
transitions, stable group tracking, and accurate target associ-
ation. Most different with previous group-level models, we
minimize the energy variation of the topology rather than the
overall energy to infer the grouping dynamics, which is based
on the observation that persons moving in two continuous
frames usually have slight motion variation and smooth energy
variation. The contributions of this paper are summarized as
follows:

• We propose a novel social-topology model with a
topology-energy function to characterize and quantify the
group dynamics of moving persons and groups combin-
ing intra- and inter-group structures and learned typical
topology patterns.

• We minimize the topology-energy-variance with a group-
tracklet jump-moves strategy to solve the multiple per-
son tracking problem, which results in smooth topology
transitions, stable group tracking, and accurate target
association.

• We explore the proposed model on both RGB and RGB-D
datasets, showing the comparable performance in crowd
scenes.

The remainder of this paper is organized as follows: the
related work is described in Section II. The group-tracklet-
level topology energy model is introduced in III and the
proposed social topology model with a minimum topology-
energy-variation optimization is presented in Section IV and V.

Section VI describes the implementation details. Experimental
results and conclusions are presented in Sections VI and VII
respectively.

II. RELATED WORK

Multiple target tracking approaches in literature [11]–[18]
can be coarsely categorized into online tracking and offline
tracking.

In online tracking category, target detection responses and
their correspondences are jointly estimated and updated for
current frame using the information acquired from previous
frames [11], [13], [19]–[21]. Methods such as Kalman Filter
and Particle Filter [22] are usually adopted to estimate the
intermediate states, while sparse represantation [23], online
feature learning [19], [20] and Hungarian algorithm [13]
are used to calculate target responses. Target occlusions are
modeled as merging and splitting of tracklets and solved by
using Markov Chain Monte Carlo (MCMC) [24]. Despite of
the online advantages of these approaches, they tend to fail
when encounter challenges from serious occlusions, target
appearance variations and/or complex person motion. Because
they can use only short-term target observations, lacking long-
term tracklets association or optimization.

In offline tracking category, target detection responses from
object detectors are gradually formed into tracklets and the
final tracks are obtained by associating the tracklets at different
granularities [25]. Existing approaches have widely adopted
the data association method which is typically formulated
as a graph model, e.g., a cost-flow network [12], [26]–[28],
and solved by optimization algorithms including K-shortest
path [27], Conditional Random Field (CRF) [29], [30], and
metric learning [16]. To guarantee the trajectory smoothness
in the graph, for example, Wen et al. [31] adopted a tracklets-
dense neighborhood searching strategy. Zamir et al. [32]
and Dehghan et al. [33] defined a fully-connected graph
to connect all the person detections. To discriminate differ-
ent person, Yang et al. [29], [34] used a trajectory-based
CRF function to online learn the affinity and dependency.
Yang et al. [17] adopted incremental learning to learn tem-
poral dynamic appearance among the person observations.
Andriyenko et al. [35] and Milan et al. [36] presented
the energy minimization methods with trajectory-level con-
straints to distinguish persons. Despite of the global/local
optimization advantages, most of these trajectory-level meth-
ods ignore the interactions among persons and interactions
between persons and the environments, and therefore could
be challenged in scenes of target occlusions and complex
dynamics.

To perform multiple person tracking in scenes of occlusions
and complex dynamics, the socially-aware constraint [37]–[39]
has attracted increasing attention. Leal-Taixé et al. [40] learned
a dictionary of interaction feature on image-level to capture
interactions among individual persons, which leaded to a much
richer representation for the motion information of persons.
Following this clue, Milan et al. [41] exploited image-level
information and associated super-pixel to a specific target or
classified it as background. They then used the segmentation
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to recover the target information that were missed by the
detection response. Choi et al. [20] introduced a local flow
descriptor that encoded the relative motion pattern between a
pair of temporally distant detections using long term interest
point trajectories, which provided a robust affinity measure
for estimating the likelihood of matching detections. Socially-
aware constraint in data association had also been explored.
Alahi et al. [42] proposed a social affinity map feature to define
the motion feature in crowd scenes and utilized it to solve the
large-scale pedestrian forecasting problem. Gning et al. [43]
learned the network structure for the target-group as an evolv-
ing graph model, which was propagated combined with a
sequential Monte Carlo method.

Social behavior recently has caught more attention in
tracking community. Typical social factors include a persons
destination, desired speed, and repulsion from other individ-
uals, as well as social grouping behavior. Ge et al. [44]
automatically discovered small groups of individuals trav-
eling together to infer social groups given a tracking
result. Chen et al. [5] adopted an online learning strat-
egy to formulate the social behaviour as an elementary
grouping model. Leal-Taixé et al. [9] proposed a linear pro-
gramming based group model to track multiple persons,
in which the social force [2] was used to model the persons’
behaviours.

Most relevant works are from [6]–[8], [45] that leverage
behaviour analysis to model person motion and group dynam-
ics. Yamaguchi et al. [6] formulated person behavior as an
energy minimization model to infer grouping for better tra-
jectory prediction and behavior prediction. The model viewed
persons as decision-making agents that considered a plethora
of personal, social, and environmental factors to decide where
to go next. Using the similar framework, Pellegrini et al. [7]
modelled the dynamic social behaviour in an energy view,
which considered several important aspects of human behav-
ior: future moving destination, environment, and collisions.
Qin and Shelton [8] presented a data association approach
to exploit social grouping dynamics, where multiple track-
lets were clustered together in group entities. They adopted
a two-step optimization that provides both tracklet-tracklet
associations (to link multiple tracklets of the same person) and
tracklet-group associations. Motivation behind their work was
that tracklets belonging to the same group should be related to
the same individual with higher probability than the tracklets
associated to different groups.

Inspired from group-based multiple tergets tracking meth-
ods, we propose a topology energy model to quantify person
behaviors and group dynamics. Our work is related to [45],
constructing a tight relation of mutual support between the
modeling of individuals and groups, promoting the idea
that groups are better modeled if individuals are considered
and vice versa. Our model inherits advantages from above
reviewed social grouping models, but differs in two crucial
aspects: 1) We propose a topology-level model to describe
the group dynamics, expecting higher intra-group but lower
inter-group energy distributions rather than minimizing the
summation of all the groups’ energy. 2) We propose using
learned topology patterns and a topology-energy-conservation

TABLE I

NOTATIONS IN THIS PAPER

strategy to track groups and individuals, which is expected
to produce smoother topology transitions, more stable group
tracking, and more accurate target association.

III. TOPOLOGY-LEVEL MULTIPLE PERSON TRACKING

To make the paper self-contained, we review the classic
multiple person tracking formulation with data association.
For ease of reference, we list all the denotations used in this
paper in Table I. Let L = {l1, l2, · · · , ln} denote all person
tracklets of a video sequence, supposing N persons in F
frames. A tracklet li is a consecutive sequence of detection
responses that contain the same target. A binary association
indicator, Xij , defines the hypothesis that pairwise tracklets
li and l j contain the same person (li occurs before l j ).
Aij denotes the tracklet affinity between tracklets li and l j .
The goal of multiple person tracking is to associate tracklets
that correspond to the same targets, by minimizing a cost
function:

arg min
X

∑

i, j

Ai j Xi j

︸ ︷︷ ︸
tracklet

,

s.t . Xij =
⎧
⎨

⎩
1 if l j is associated after li ,

0 otherwise,

∑
i

Xi j ≤ 1 and
∑

j
Xi j ≤ 1. (1)

Here we would like to obtain the binary label Xij that
indicates whether they are the same person (1) or not (0). Con-
straints

∑
i Xi j ≤ 1 and

∑
j Xi j ≤ 1 imply that each tracklet

follows at most one tracklet, except for the first and last
ones.

The topology relation in this paper is designed to model
individual and group dynamics, which constructs a tight rela-
tion of mutual support between the modeling of individuals
and groups as a high-level constraint. Based on tracklet-level
association function Eq. (1), we add the group association
matrix, Tik , which is an indicator matrix similar with the
tracklet indicator Xij . If tracklet li belongs to Gk , then
Tik = 1, otherwise, Tik = 0. The topology function can be
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written as

arg max
X,T

∑

i,k

�ik Tik

︸ ︷︷ ︸
group

+α
∑

i, j

Ai j Xi j

︸ ︷︷ ︸
tracklet

,

s.t . Tik =
{

1, if li belongs to group Gk,

0, otherwise,

Xij =
{

1, if l j is associated after li ,

0, otherwise,
∑

k
Tik = 1,

∑
i

Tik ≥ 1,
∑

i
Xi j ≤ 1,

∑
j

Xi j ≤ 1. (2)

Here �ik denotes the affinity between the tracklet li and
group Gk . The constraints on Xij and Tik satisfy

∑
i Xi j ≤ 1,∑

j Xi j ≤ 1,
∑

k Tik = 1, and
∑

i Tik ≥ 1. They require that
each tracklet belongs to only one group Gk , and one group
contains at least one tracklet. The RGB-D affinity Aij that cap-
tures appearance and depth consistency of persons is detailed
in Sec. VI-D.

The function in Eq. (1) is clearly non-convex, and the
function in Eq. (2) is more complex. Solving it directly is
computationally expensive and easily getting stuck into a local
optimum. In the tracking scenario, however, the energy form of
the topology model is still helpful to the tracking results if the
model is well initialized and optimized to a better objective.
Previous researches [6], [7], [46] design energy minimization
methods to assign every possible solution an ‘energy’ and then
find the state with the lowest energy. In this paper, we improve
the energy model from tracklet level to a topology level,
a joint energy form of group and tracklets in a social topology.
To keep the energy of topology as natural as possible, the
energy function is defined in consistent with Eq. (2):

E = Egro + αEtra, (3)

where the Egro and Etra denote the energy of group and
tracklets, respectively. The group term Egro keeps the tracking
targets in groups with a high social affinity, the tracklets energy
Etra captures the motion and appearance of persons in a
tracklet-level. α is a regulation factor.

IV. TOPOLOGY-ENERGY MODEL

The topology energy function, composed of the group
energy and the tracklets energy terms, is defined in this section.
The definition of the energy function is to quantify the socio-
topology relations among groups and tracklets.

A. Group Energy

The topology term in Eq. (3) is inspired by researches
on social topology relations [3], [47], which suggest there
are three governing sociological factors related to pedestrian
movement:

1) Some pedestrians follow the same routes to specific
geographical goals.

2) Each pedestrian walks at a maximum speed depending
on certain environmental conditions.

Fig. 2. Illustration of the moving orientations. (a) 1-8 bins denote different
orientations, and 0 denotes that a pedestrian keeps still in successive two
frames.

3) Pedestrians continuously adjust their positions to facili-
tate in-group verbal exchange and avoid collisions with
out-group pedestrians.

The first two factors are modeled as moving orientation
and speed terms in the intra-group relation. The third factor,
distance term, is modeled as an inter-group relation. The group
energy in Eq. (3) is modeled as

Egro = Eintra − β1 Einter , (4)

where, the parameter β1 is used to balance the energy between
intra- and inter- parts. When performing group-based multiple
person tracking, we expect the maximum-intra-group-affinity
and minimum-inter-group-affinity.

Intra-Group. The intra-group component is considered from
the perspective of each in-group members’ motion feature,
which defines the affinity between a tracklet li and a group Gk .
This component contains the speed affinity as

Vik = e

−‖vt
i −v̄t

k‖2

2σ2
v̄t
k , (5)

where v t
i denotes the speed of the tracklet li at frame t and

v̄ t
k denotes the average speed of group Gk at frame t . Vik thus

defines the speed affinity between li and Gk . In the orientation
constraint, a similar Potts model [48] is adopted to define the
affinity among different moving orientations:

φik = 1 − cos(ϕt
i − ϕ̄t

k)

2
, (6)

ϕn = 2πn

q
, (7)

where φik defines the moving orientation between tracklet li

and group Gk . Persons’ moving orientations ϕ are quantized
into q = 9 bins (cf, Fig. 2) with ϕn the bin’s label.

The speed and orientation factors together force in-group
members have similar motion patterns, at the same time,
reduce the identity switching and smooth the in-group tra-
jectory during the poor detections. Upon this motion pattern,
intra-group energy is defined as

Eintra =
K∑

k

N∑

i,li ∈Gk

Vikφik , (8)

where K is the number of groups at frame t . We omit the
superscript t in Eintra for simplification. Instead of considering
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the speed and orientation together as in [5] and [44], we cal-
culate these two factors in two terms, which guarantees the
social topology model be applicable in both RGB and RGB-D
datasets and enables it effective against the poor detections.
Especially, the ‘0’ bin in orientation term is assigned to the
stationary object, which makes the stationary pairwise tracklets
keeping a stable group energy distribution.

Inter-Group. The inter-group energy in Eq. (4) is designed
to make in-group members be close with the group center
to facilitate communication and the motion affinity among
different groups as large as possible to avoid a collision:

Einter =
K∑

k

N∑

i,li ∈Gk

d
∥∥lt

i − Ḡt
k

∥∥2 + β2

K∑

k,p,k �=p

∣∣∣V t
k φt

k − V t
pφ

t
p

∣∣∣
∣∣∣Ḡt

k − Ḡt
p

∣∣∣
,

(9)

where Ḡk is the state of the group center. Two tracklets can be
divided into the same group Gk only if their distance satisfies
D(li , l j )<d . The parameter β2 is used to balance the energy
between two parts of distance. In the second component,
the average group speed, orientation and distance are jointly
measured to discriminate groups. Note that the inter-group
term plays a role as clustering, which enforces the trajectory
alignment in group. Especially when the in-group members
lack of image evidences (without detections), the grouping
results are able to provide a soft transition way to smooth the
trajectory.

B. Tracklets Energy

The second component of social topology energy model is
tracklets energy. For each tracklets, the target should be also
matched with detections in the lowest identity switches and
fragments. Two factors, motion and appearance constraints,
are designed to regulate the tracklets energy form as

Etra = Emot + β3 Eapp. (10)

where, Emot and Eapp denote the motion and appearance
energy of tracklets respectively. The parameter β3 is used to
balance two terms.

1) Motion: Tracklets is about track combinations of one
person moving in successive frames, which in most cases is
smooth. Upon this, the target motion model is measured by
minimizing the distance between state vectors:

Emot =
N∑

i

∥∥∥lt+1
i − lt

i

∥∥∥
2
. (11)

The motion energy model poses a tracklet-level constraint to
data association. Such a constraint encores short-term smooth-
ness and helps avoid target drifting. In addition, a global
tracklet association is used in a relatively long duration to
bridge, cut, and grow tracklets in model optimization, detailed
in Sec. V.

2) Appearance: Track fragmentation is mainly cased by the
missing evidence. To connect two tracklets fragments across
the no-evidence area, we add the appearance penalty in the
tracklets energy. This is based on hypothesis the appearance

feature of a person usually changes smoothly in consecutive
frames. To keep the term both robust and smooth, we use a
sigmoid function as,

Eapp =
N∑

i

1

1 + exp(1 − A(lt+1
i , lt

i ))
, (12)

where A(lt
i , lt−1

i ) is calculated by the widely-used Bhat-
tacharyya coefficient on appearance features. We improve the
appearance feature in terms of different datasets to promote
it better fit the multiple person tracking problem, as shown in
Sec. VI-D. Moreover, the appearance model is designed to fit
gradient-based optimization manner (cf. Sec. V) according to
the property of sigmoid function.

V. MODEL OPTIMIZATION

With the defined topology energy model, the conventional
multiple person tracking problem is formulated by minimizing
the energy in an analytical inference way. Nevertheless, the
proposed topology energy model in Eq. (3) is obviously not
convex. When adopting the Hungarian algorithm and dual-
decomposition method [8] to solve the model, it is computa-
tionally expensive and easy getting stuck into a local optimum.
We therefore propose a topology-energy-conservation strategy
to solve the energy model.

A. Topology Energy Variation

A property of tracking is that persons move slowly and
smoothly relative to the frame rate. This consensus means
that the motion and appearance of persons change slightly in
consecutive frames. In the optimization, we do not primarily
minimize the energy function defined in Eq. (3), but the change
of the topology energy. The change of topology is measured
with an energy variation function 	E between two frames,
defined as

	E =
F∑

t

∣∣∣Et+1 − Et
∣∣∣, (13)

where 	E measures the energy variation in continuous frames.
Fig. 3 visualizes the quantified topology energy in one tracking
example. The correct tracking results have lower and stable
energy variation, while the false tracking results (identity
switch and/or group division erorr) have larger energy vari-
ation.

B. Minimizing Topology-Energy-Variation

To obtain a reasonable group and trajectory solution, the
energy variation defined in Eq. (13) is minimized as

arg min
X,T

	E . (14)

The standard conjugate gradient method is adopted to min-
imize the energy function in each iteration. To speed up the
convergence, and get out of the weak local minimum, a two-
level jump strategy is proposed for changing the dimension
of the current state, which can be regarded as a lite version
of reversible jump Markov Chain Monte Carlo (RJ-MCMC)
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Fig. 3. Correct and false topology tracking results are shown in (a) and (c)
respectively. The topology energy in (a) changes slightly, but the topology
energy in (c) changes abruptly. (b) shows the energy variation of (a) and (c).
(d) shows the change of group’s size in (a) and (c). Best viewed in color.

methods [49]. RJ-MCMC has been improved as different
fashions and applied to multiple person tracking problem
in [43], [44], and [46]. Most different from the previous
researches, we design two-level jump moves embedded in the
energy variation framework.

The two-level jump moves, called group-tracklet jump, are
designed to fit the group-tracklets energy form. The jump
moves are able to change the dimensionality in both of groups
and trajectories (Xij and Tik ), which give the optimization
a high degree of flexibility and a smooth transition among
groups and trajectories. With the aid of a topology initializa-
tion (cf. V-D), the optimization is able to get much closer to
a global minimum at limited iterations. Moreover, the initial
topology configuration does not require the correct number of
targets and groups.

C. Jump Moves

To get rid of weak local energy minima, we introduce
two types of jump moves, which change the configuration
of the current group and trajectory solution, thereby altering
the dimension of the current state L = {li } and G = {Gk}
after each iteration. By jumping to different regions of the
search space while always lowering the energy variance, the
optimization is able to find much stronger local minima.

1) Group Jumps: We design group bridging, merging and
splitting jumps. Group bridging jump extends the group length
and connects it with another group, which facilitates the track-
lets association. Group merging and splitting can effectively
improve the group association, which plays a group association
role in group transition.

2) Group Bridging: The temporal span of a group could
be cut off by missing or false detections, particularly in
severe occlusions. We thus extend the group length both
spatially and temporally to bridge the gap between groups.
Denoting Gk = Gbk :ek

k the temporal span of a group between

Algorithm 1 Model Optimization

frames bk and ek , two groups Gi and G j are connected into
one group if the new energy variation 	Enew < 	E , as:

Gk = (Gi , G
ei+1 :b j−1
con , G j ). (15)

Moreover, the group connecting provides a stronger tracklet-
association solution for the in-group tracklets. As soon as two
groups connected as one group, the trajectory of the members
in G

ei+1:b j−1
con should be connected as well, which refers to

tracklet jumps.
3) Group Split and Merge: The group does not always

stay stable in the whole tracking. When tracklets stay close
enough, they are considered to be merged into a group.
While the in-group members show different motion patterns
(velocity and/or orientation), those members should be deleted.
We check 	E after each iteration. If 	E in time t is
higher than a certain threshold ε, we give the current group
configuration a ‘perturbation’ to escape the local minimal. The
jump goes as a prescribed order (see Alg. 1). For the in-group
tracklet lt

i with the highest energy according to Eq. (4), we
delete this member from Gk as an independent target and
evaluate the energy variation 	Enew . If 	Enew < 	E , lt

i
is deleted from Gk , and Tik = 0. For the distance between
an independent target lt

j and group Gk is less than distance
threshold d , we add lt

j in Gk . If 	Enew < 	E , merging is
executed as Gk = Gk ∪ lt

i , and Tik = 0.
4) Tracklet Jumps: Tracklet bridging. Let lk = lbk :ek

k denote
the state of kth trajectory between frames bk and ek . The
bridging is kept if the 	Enew is lower than the current energy
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variation.
lk = (li , l

ei+1 :b j−1
con , l j ), (16)

5) Tracklet Growing and Cutting: Tracklets can grow in
forward and backward as group jumps. If the 	Enew is
lower, the growing is li =

(
li , lei +1:ei +t

i

)
in backward and

li =
(

lbi−t :bi−1
i , li

)
in forward. The false detections often

make tracklets from different persons connecting to a tra-
jectory. Tracklet cutting is used to eliminate false detec-
tions in the long trajectory. Splitting in the frame t with
a higher 	Etra by cutting the trajectory as li = lbk :t

k and
l j = lt :ek

k .
Similar with [46], the jumps among tracklets are able to

pick up lost tracks and weed out spurious ones for tracklets.
However, there are two types of tracklets in the proposed
topology model. One is independent tracklets, Tik = 0; the
other has the group relation, Tik = 1 in the partial or whole
time span. For the former, the jump among the tracklets
without the group constraint. For the latter, we connect the
tracklets in the certain group, which leads a much smaller
search space, comparing with the global search. The group
connection G

ei+1:b j−1
con should be smoothed by the tracklet

jumps. In the duration ei : b j , the E
ei :b j
Gk

of the group Gk

is evaluated by the total energy of its in-group tracklets as

E
ei :b j
Gk

=
∑

li ∈Gk

(
Emot

(
l
ei :b j
i

)
+ β2 Eapp

(
l
ei :b j
i

))
, (17)

where we minimize the 	E
ei :b j
Gk

at frames ei : b j to make sure
each in-group trajectory connecting is correct.

The group-tracklet jumps are executed after each iteration in
a fixed order as described in Alg. 1. The group jump is more
likely providing a coarse solution as a group solution under
socio-constraint. This leads the tracklet jump in a reasonable
space (in-group members) rather the jump among trivial
tracklets, efficiently improving the optimization to converge.
The parameters in jumps: the bridging time step of group and
trajectory, the number of frames a trajectory is grown, are
executed independently, which conducts the optimization to a
lower energy variation.

D. Topology Initialization

Like any non-convex optimization, our algorithm depends
on the initial solution from which topology configuration is
started. Although the group-tracklet jump strategy is able
to conduct the optimization jump out of the local minimal
compared with a pure gradient method. If the initial topology
solution is far away from the global minimal, it will take more
iterations to execute jumps or stuck in a local region with a
energy variation.

In initialization, tracklets are generated after low-level asso-
ciation, which is performed in a greedy manner using a max-
imum overlap criterion. But for grouping, only the tracklets
lasting more than ft frames are considered as confident ones,
because most false or ghost tracklets are short ones. The typi-
cal group patterns are then adopted to initialize groups via an
off-line learning procedure, which is detailed in Sec. VI. If the

Fig. 4. Visualization of the learned typical group patterns. The size of typical
group is ranging from 1 to 4. The energy distribution of the typical group
patterns are visualized according to Eq. (4). A brighter color indicates a higher
energy distribution. Best viewed in color.

distance of pairwise tracklets is lower than the threshold d ,
this grouping result is kept. Actually, this initial solution in
greedy fashion is impossible to get to the optimal, but quickly
providing a grouping and tracklets association solution for the
following group-tracklet jumps. Empirically, different initial
solutions converge to similar final group and tracklets results.
This is completed by the group-level and tracklet-level jump
moves in the following optimization process. The difference
is that a better initial solution helps get to the final solution
in less jump moves. Thus we investigate the typical group
patterns in training datasets, which provides a better initial
solution, detailed in Sec. VI.

VI. IMPLEMENTATION

In this section, the details about training and optimizing
a topology model are described. The details about multiple
person tracking implementations are also presented.

A. Typical Group Pattern Training

Typical group patterns are investigated in training datasets
to initialize groups by conducting off-line learning. We record
typical configuration of groups with a stable energy variation
in RGB and RGB-D training dataset, and formulate them as
typical group patterns. The topology patterns are learned in
RGB and RGB-D training datasets with 13732 frames. In 3D
applications with the real-world depth information, d in Eq. (9)
denotes the world-coordinate distance (meter) between two
persons, while d denotes the distance between the center points
of targets’ bounding box in images.

In training sequences, given a set of detections and the
corresponding ground truth (GT) target and group annotations,
the GT targets’ IDs are first assigned to each detection as
complete trajectories and groups. The parameter in our model
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TABLE II

TRAINED PARAMETERS

is not determined manually. We record these parameters in
the annotated groups and trajectories: (1) size,1 (2) average
distance d in Eq. (9) among neighbor members. (3) average
intra-group and inter-group energy and (4) average tracklets
motion and appearance energy. Fig. 4 visualizes several typical
group patterns and energy distribution with the size ranging
from 2 to 4.

B. Parameter Training

During the typical group pattern training, the intrinsic
parameters of topology have been determined, but the weight
of all the energy components should be set as well. In training
sequences (which have groups of pedestrian), the augmented
values of regular parameters α, β1, β2 and β3 are given to eval-
uate the group and tracklets energy variation. First, the amount
of groups and how many times of objects falsely divided into
groups are compared with group GT. The optimal α, β1 and
β2 are selected with the lowest group amount error εa and
dividing error εd as

arg min
α,β1,β2

εa + εs . (18)

The parameter β3 is trained in a similar manner, but the
reference standard changes as MOTA (cf. Sec. VII). We run the
tracking algorithm while keeping α, β1 and β2 fixed. Table II
shows the parameters learned in the training datasets.

C. Crowd Density

According to the density of persons, the group configuration
and the energy variation change in three levels. Low density:
group members tend to move side-by-side in the size of 2,
forming a line perpendicular to the moving orientation, thereby
occupying a large area. Middle density: when the local
density level increases, the average distance between group
members is, in fact, reduced. Persons in the same group
needs to adapt to the reduced availability of space. It is
observed that the middle person tends to stand back, while
the persons left and right get closer to each other. This is
done by configurations of V-like or U-like topology pat-
terns in topology configuration with three and four members.
As shown in research [4], these configurations are emergent
topology patterns resulting from the tendency of each person to
find a comfortable moving position supporting communication
with the other intra-group members. High density: when the
density reaches a high level, the physical constraints would
prevail over the social preferences, persons in the same group
would start moving one behind another, forming a river-like

1Size of a group pattern denotes the number of topology members.

Fig. 5. RGB-D feature extraction. Best viewed in color.

topology configuration, which corresponds to the aerodynamic
features.

The social distance d in our model changes with crowd
density, which is shown in Table II. We divide the crowd
density of scenes in three levels according to the number of
persons per-frame as well: low (<10), middle ([10, 20]) and
high (>20).

D. RGB-D Affinity

To fit the RGB-D datasets, we fully explore the RGB-D
feature for the tracklet appearance. Given a video sequence
with depth data (LIDAR or stereo vision), the combined
features in ROIs are extracted to describe targets in terms of
their appearance and 3D positions.

Assuming that each target is an isolated 3D bounding box,
we extract a set of RGB-D based features (Histograms of
Oriented Gradient and Color features, and Histogram of Depth
(HOD) feature [50], [51]) to discriminate targets from their
backgrounds. Note that the one ROI in the image domain
can in fact contain more than one targets due to occlusions,
which introduces great ambiguity to data association. The
RGB-D data is thus projected into two planes, X-Y plane and
Y-Z plane, to decrease such ambiguity, as shown in Fig. 5.
The Y-Z plane is an auxiliary plane, in which we calculate
the average depth value of each target. We define target and
background seeds to be the set of pixels inside the bounding
box. To compute the target seeds in the projected 2D bounding
box, we remove the pixels corresponding to the background
seeds as well as a pixel band around the box as [52], which has
a larger depth value than the mean depth value in a 2D box.
To make this process more robust in the X-Y plane, an online
adaptive feature pool, HOGC [53] feature is utilized. In the
X-Y plane, 14*7 bins of HOGC features are extracted, and in
the X-Z plane, 9*5 bins of variation features [50] on cloud
points’ locations are extracted. There are 143 bins of RGB-D
features in total to represent a target.
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TABLE III

COMPARISONS OF TRACKING RESULTS ON TWO RGB DATASETS IN MULTIPLE OBJECTS CHALLENGE BENCHMARK [54]. FOR THE ITEMS WITH ↑,
HIGHER SCORES INDICATE BETTER RESULTS, FOR THOSE WITH ↓, LOWER SCORES INDICATE BETTER RESULTS. RED AND

GREEN NUMBERS SHOW THE BEST AND SECOND BEST PERFORMANCE RESPECTIVELY

VII. EXPERIMENTS

In this section, we evaluate the proposed multiple person
tracking algorithm, as well as comparing it with recent state-
of-the-art methods. Experimental results clearly show the ben-
efits of utilizing social topology in multiple person tracking.

A. Dataset and Metrics

The proposed methods are tested and evaluated on two
kinds of publicly available datasets, RGB and RGB-D datasets,
which are summarized in Table V.

The commonly used multiple person tracking metrics
defined in [55] is adopted to evaluate the tracking perfor-
mance following [16]–[19], [28], [40], [41], [46]. The Multi-
Object Tracking Accuracy (MOTA) combines three types of
errors: false positive (FP), missed targets (FN), and identity
switches (IDS), which is normalized such that the score
of 100 percent corresponds to no error. All three types of
errors are equally weighted. Multi-Object Tracking Preci-
sion (MOTP) measures the alignment of the tracker output
with respect to the ground truth normalized to the threshold
value. Mostly Tracked (MT) and Mostly Lost (ML) scores
are computed on the entire trajectories and measure how
many Ground Truth trajectories (GT) are successfully tracked
(tracked for at least 80%) and lost (tracked for less than 20%).
The items Frag. and IDS record how many times the ground
truth trajectory is interrupted and switched by a false ID.
Hz records the tracker speed in frames per second. In addition,
Recall and Precision (Prec.) are two basic metrics. Recall
means the rate of correctly matched detections / total detec-
tions in ground truth. Precision means the rate of correctly
matched detections / total detections in the tracking results.

B. Evaluation on RGB Benchmark

The RGB datasets are from the MOT benchmark [54],
which is composed of 11 training and 11 test video sequences,
of 11,286 frames (∼16.5 minutes). Some of the videos are
recorded using mobile platform and the others are from
surveillance videos. As it is composed of videos with var-
ious configurations, tracking algorithms that are particu-
larly tuned for a specific scenario would not work well in
general.

To keep consistent with previously reported results,
we follow the exact same evaluation protocol as other

approaches [16]–[19], [28], [40], [41], [46], and use their
reported results on MOT website. Unsurprisingly, same detec-
tion results are used as inputs to all compared tracking
approaches [54]. To verify the robustness, we design three
comparing methods based on the proposed model.

• Ours (Our full model, including the inter- and intra-group
energy and using the group and tracklet jump moves, the
jump threshold of energy variation ε is 0.05);

• Ours+CGD (Using purely conjugate gradient descent,
which runs until convergence or to maximal number of
iterations (here, we set 30), which suffices to get close to
a local minimum, this is similar to [46]);

• Ours+No Inter-G (Without inter-group term in Eq. (3),
only intra-group term and tracklet jump moves);

• Ours+No Var (Without topology variance minimization,
solving Eq. (3) using the group and tracklet jumps).

Table III summarises the accuracy of the proposed
method (GST) and other state-of-the-art methods on the
MOT benchmark. It clearly shows that our model achieves
the comparable performance. Fig. 6 gives the tracking sam-
ples in AVG-TownCentre and PETS09-S2L2 sequences. One
frame is randomly selected to show our better performance
than results in [19], [40], [41], and [46]. Note that as the
AVG-TownCentre sequence is in a high resolution covering
the whole street, we zoom in to the street corner at frame 59,
and in PETS09-S2L2 sequence we take the result at frame 61.
Our approach is able to find more tracklets than the compared
methods, particularly, the trajectory in group. Some missed
target positions (red arrows in Fig. 6) could be inferred by the
group topology, as they keep slight topology variation in suc-
cessive frames. As the false tracking positions (yellow arrows
in Fig. 6) are usually caused by the false detections and usually
last short time, our approach that only chooses the confident
tracklets in grouping ( f >5 frames) shows advantages over
compared methods.

Fig. 7 shows the energy minimization with different solution
techniques on MOT benchmark. We conclude that the full
model “Ours” including the complete group-tracklet jumps is
able to escape weak local minima, since the purely continuous
conjugate gradient descent optimization “Ours+CGD” can
only search a small local neighborhood of the state space in
the case of non-convex energy optimization. The further exper-
iment turning off the inter-group term “Ours+No Inter-G” or
energy variation minimization “Ours+No Var” performs even
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TABLE IV

COMPARISONS OF TRACKING RESULTS ON AVG-TOWNCENTRE AND PETS09-S2L2 SEQUENCES IN MOT BENCHMARK

Fig. 6. Comparison of our approach with other methods on RGB datasets. The results of comparing methods are downloaded from the MOT website. Red
arrows denote the missing targets, while yellow arrows denote the false targets. Best viewed in color. (a) Tracking results on AVG-Towncentre sequence.
(b) Tracking results on PETS09-S2L2 sequence.

Fig. 7. Tracking results of different energy optimization solutions on MOT
benchmark.

worse than the conjugate gradient descent solution. Only by
combining the two schemes “Ours” is possible to reach a good
optima of the proposed energy-variation-minimization.

TABLE V

DATASETS FOR TRAINING AND TEST

C. Evaluation on RGB-D Datasets

The two evaluations demonstrate that the proposed model
is generally applicable to RGB and RGB-D datasets in any
application scenario.

Experiments are carried out on four public datasets: the
Sync dataset [56], the SDL dataset [57], the SDL-Campus
dataset [57], and the LIPD dataset [58]. Each video sequence
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TABLE VI

COMPARISONS OF TRACKING RESULTS ON FOUR RGB-D DATASETS. IN THE “BASELINE” ITEM, G=GROUP, T=TOPOLOGY

in the datasets has corresponding depth information captured
with depth sensors (LiDAR or stereo vision). The videos are
recorded at 10 FPS, and have a variable number of objects
(car, pedestrian, and cyclist). The crowded scenes, moving
cameras, and appearance variation of moving objects make the
target tracking on them quite challenging. Many conventional
assumptions adopted in MOT with a surveillance camera
are not applicable in these cases (e.g., fixed entering/exiting
location, background modeling, etc).

In RGB-D experiments, we use the codes published by the
authors and the parameters (cf. Table II) learned in the SDL-
Crossing datasets, and compare it with state-of-the-art methods
in Table VI:

• RGB (RGB-based methods: the network flow method
[27], the online learned CRF model [29], the continuous
energy minimization [46]);

• RGB+G (Grouping method: [5]);
• RGBD+G (Grouping method using RGB-D data [57]);
• RGB+T (Our model without using RGB-D feature);
• RGBD+T (Our full model).
Table VI shows that our approach “RGBD+T” significantly

outperforms recent state-of-the-art RGB-based methods in sig-
nificant margins (averagely 12% improvement in both Recall
and Precision), and our RGB-based baseline method Ours*
(“RGB+T”) outperforms the other trackers averagely 5% in
Recall and 4% in Precision. Compared with the depth-based
tracker [57], our model improves more than 2% and 5% in
Recall and Precision in the Sync and SDL datasets. This
validates that the topology-level constraint added in the con-
ventional multiple person tracking framework is a key factor
for accurate tracking. With such a topology-energy-variation

minimization manner, the in-group target occlusion problem
could be better addressed.

The Sync dataset is a video sequence with 2147 frames. In
this video sequence, long-term and serious occlusion issues
are frequent. Cars parking along both sides of the road
coincidentally have similar colors with the pedestrians and are
close to the pedestrians. Many of the false detections are added
to the trajectories by the RGB-based methods, so the MT score
in Table VI decreases. It can be seen that our approach out-
performs other methods through the topology-energy-variation
minimum optimization. In this sequence, frames ranging from
150 to 600 have multiple occlusion scenarios. It is observed
that the pedestrian detector outputs numerous false detections.
Many of the false detections have been added to the trajectory
by the vision-based methods in the first baseline, and the MT
item in Table I decreases. That is because the recurring false
and missing detections in dynamic traffic backgrounds make
the affinity probability of appearance and motion unreliable.
Therefore the false detections cannot be easily excluded. The
SDL dataset is recorded on a straight road and a crossroad,
and has fewer occlusions. In Table VI, it is observed that
Recall and Precision increase compared with the results in
the Sync dataset. Our approach has the fewest Frag. and IDS
errors in the SDL dataset. Compared with other datasets, the
pedestrians of the SDL-Campus dataset is in a relatively low
density, and most pedestrians do not walk in groups. In this
case, the inter-topology energy makes a key role in the tracking
but the intra-topology energy is negligible. Surprisingly, our
approach can still have significant performance gain over
the state-of-the-art approaches [5], [46]. The LIPD dataset
is recorded from a sensor acquisition system mounted on
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Fig. 8. Tracking results of our approach. In each frame, the tracking outputs include three parts: 3D bounding box (in second row), topology configuration
(the same color indicates the same topology), and topology energy distribution. Best viewed in color. (a) Tracking examples on the Sync dataset. (b) Tracking
examples on the SDL dataset.

an instrument-equipped Yamaha vehicle, driving in an urban
environment. The dataset contains 4823 frames. The dataset
is captured at dusk, and the challenge is mainly from lighting
variation. The comparative results suggest that our approach
is consistent in poor illumination. Some tracking samples in
RGB-D datasets are shown in Fig. 8.

D. Group Discovery
Group discovery is provided by the group indicator matrix T

in the topology model, which indicates the relationship
between individuals and groups. In [44] and [39], the following
group discovery evaluation method is adopted: each pedestrian
is coded into one of two categories: alone or in a group. Since
we do not have all the annotations on the RGB and RGB-D
datasets we conduct multiple person tracking experiments on,
or any available implementations of related work, we are not
able to conduct comparative experiments on all the datasets.
In evaluation, we annotate group identity in the PETS09
and AVG-TownCentre sequences. Match rate indicates the
percentage of persons that are classified correctly.

Compared with existing methods [37], [38], [43], [44],
experiments show that our group discovery component
produces more reasonable results. In the test datasets,
our approach produces 85% matching rate on more than
300 trajectories. Recall that the same person in different time
windows are treated as different persons [44]. In [39], the

pedestrians are only divided into along and pair categories.
However, in experiments, we keep individual and group iden-
tity consistent in frames and achieve substantial agreement
with human annotator on this dataset. It is also observed that
36% of the people moving in groups in the AVG-TownCentre
dataset, The figure is 65% in the PETS09-S202 sequence.

E. Energy Variation
As described before, the complexly designed energy func-

tion in multiple person tracking is always in a non-convex
form, so optimization could not guarantee a global minimum
in limited time. How to reach a strong local minimum being
not far away from the global minimum in limited iterations
has been investigated in many previous work [7], [8], [46].
We visualize the energy variation in different optimization
strategies applied in our model, shown in Fig. 9. The blue
line denotes the purely conjugate gradient descent optimiza-
tion without any jump move, by which the energy always
goes along the way of decreasing greatly. Most trajectory
fragmentation caused by false detections and the observations
missing evidence can not be modified. The red line denotes
the strategy with only tracklet-jump move. Similar to the
work [46], parts of the false tracklets solution could be repaired
by the tracklet-level jump. However, lacking a soico-topology
constraint makes the jumps without the context information.
Sometimes, tracklets with different identities are connected
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Fig. 9. A tracking example of group-tracklet jump move in PETS09-S2L2 sequence. One group splits into two parts at frame 410. Target l1 is occluded by
other in-group members at frame 414, but found by the tracklet bridging at frame 419. The right figure shows the topology energy variation in this tracking
example. Best viewed in color.

to the same target by the ‘flexible’ jumps. The green line
represents the performance of our optimization in group-
tracklet jump moves. The energy variation changes slightly
compared with the other strategies, which ensures the energy
jump out of the weak local minimal but not so far away in a
social context. The tracklet-jump could be treated as a kind of
tracklet-repair manner in once group jump.

F. Convergence
In the optimization process, the energy variation is mini-

mized until all the group and tracklet jumps run out, which
commonly takes less than 20 iterations to reach the minimum
under the given threshold ε = 0.05. Another important imple-
mentation in solve the energy model is conjugate gradient
descent. We adopt Carl Rasmussen’s implementation2 with
its default parameters to execute conjugate gradient descent
on the energy minimization. In the setting, the Polack-Ribiere
formula is used for determining the search directions, while the
Wolfe-Powell conditions and the slope ratio method are used
for estimating the step. It runs until convergence or reaching
a maximal number of iterations without pre-defined jump
moves. This severely limits the possible state space changes,
and the search largely stays within one region of the solution
space in the non-convex model. Finally, the energy is not able
to descend much further. This optimization usually leads to a
slow convergence and weak local solution.

Another issue is about the move order in the optimization
process. We use the ordered moves in both group and tracklet
jumps, which significantly speed up the optimization process.
Actually, different move orders lead to a similar convergence
and tracking solution, which is also verified in [46]. But [46]
only uses the tracklet-level jump moves in the model, our two-
level jump is able to provide the tracking solution with a social
constraint, so that tracklets could be globally associated in a
social topology.

G. Time Analysis

The computational time is greatly affected by the number
of persons and the length of the video. Experiments are
performed on an Intel 3.4GHz PC with 4G memory, and the

2http://www.gatsby.ucl.ac.uk/~edward/code/minimize/minimize.m

TABLE VII

TRACKING SPEED OF DIFFERENT OPTIMIZATION SOLUTIONS

ON AVG-TOWNCENTRE SEQUENCE

codes are implemented in Matlab. Without codes optimization,
our approach achieves a tracking speed of ∼7 Hz when there
are averagely 10 persons to be tracked. When our approach is
applied on the high crowd density video in AVG-TownCentre,
the speed is ∼3 HZ, shown in Table VII. It is found that
the speed of our full model (Ours) is lower than the conjugate
gradient descent solution (Ours+CGD), because the full model
gets rid of the region to reach a strong local minimum by the
iterative group-tracklet jump moves, when the energy variation
is slight.

VIII. CONCLUSION

We have developed a social topology-energy-variation
model and integrated it with the conventional data association
method for RGB and RGB-D multiple person tracking. With
this model, the dynamics of a collection of moving persons
are formulated both in-group and out-group structures in a
global manner. To quantify the in- and out-group relations to
capture the topology variation, spatial energy distributions are
defined. Minimizing the topology-energy-variance in a group-
tracklet jump-moves procedure is validated to result in smooth
topology transitions, stable group tracking, and accurate target
association. Experiments show that the topology constrained
data association has the state of the art tracking performance,
validating that minimizing the energy variation is the key
factor for stable and accurate tracking.

REFERENCES

[1] W. Luo, J. Xing, X. Zhang, X. Zhao, and T. K. Kim. (2015).
“Multiple object tracking: A literature review.” [Online]. Avaliable:
https://arxiv.org/abs/1409.7618

[2] D. Helbing and P. Molnár, “Social force model for pedestrian dynamics,”
Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 51,
no. 5, pp. 4282–4286, 1995.



5588 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 26, NO. 12, DECEMBER 2017

[3] H. Singh, R. Arter, L. Dodd, P. Langston, E. Lester, and J. Drury,
“Modelling subgroup behaviour in crowd dynamics DEM simulation,”
Appl. Math. Model., vol. 33, no. 12, pp. 4408–4423, 2009.

[4] M. Moussaïd, N. Perozo, S. Garnier, D. Helbing, and G. Theraulaz, “The
walking behaviour of pedestrian social groups and its impact on crowd
dynamics,” PLoS ONE, vol. 5, no. 4, p. e10047, 2012.

[5] X. Chen, Z. Qin, L. An, and B. Bhanu, “Multi-person tracking by online
learned grouping model with non-linear motion context,” IEEE Trans.
Circuits Syst. Video Technol., vol. 26, no. 12, pp. 2226–2239, Dec. 2016.

[6] K. Yamaguchi, A. C. Berg, L. E. Ortiz, and T. L. Berg, “Who are
you with and where are you going?” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2011, pp. 1345–1352.

[7] S. Pellegrini, A. Ess, K. Schindler, and L. Van Gool, “You’ll never walk
alone: Modeling social behavior for multi-target tracking,” in Proc. IEEE
Int. Conf. Comput. Vis., Sep. 2009, pp. 261–268.

[8] Z. Qin and C. R. Shelton, “Improving multi-target tracking via
social grouping,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 1972–1978.

[9] L. Leal-Taixé, G. Pons-Moll, and B. Rosenhahn, “Everybody needs
somebody: Modeling social and grouping behavior on a linear pro-
gramming multi-people tracker,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops, Nov. 2011, pp. 120–127.

[10] A. Kendon, Conducting Interaction: Patterns Behavior Focused Encoun-
ters. Cambridge, U.K.: Cambridge Univ. Press, 1990.

[11] S.-H. Bae and K.-J. Yoon, “Robust online multiobject tracking with
data association and track management,” IEEE Trans. Image Process.,
vol. 23, no. 7, pp. 2820–2833, Jul. 2014.

[12] L. Chen, W. Wang, G. Panin, and A. Knoll, “Hierarchical grid-based
multi-people tracking-by-detection with global optimization,” IEEE
Trans. Image Process., vol. 24, no. 11, pp. 4197–4212, Nov. 2015.

[13] H. Jiang, J. Wang, Y. Gong, N. Rong, Z. Chai, and N. Zheng, “Online
multi-target tracking with unified handling of complex scenarios,” IEEE
Trans. Image Process., vol. 24, no. 11, pp. 3464–3477, Nov. 2015.

[14] J. Niño-Castaneda et al., “Scalable semi-automatic annotation for multi-
camera person tracking,” IEEE Trans. Image Process., vol. 25, no. 5,
pp. 2259–2274, May 2016.

[15] X. Shi, H. Ling, J. Xing, and W. Hu, “Multi-target tracking by
rank-1 tensor approximation,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2013, pp. 2387–2394.

[16] B. Wang, G. Wang, K. L. Chan, and L. Wang, “Tracklet association by
online target-specific metric learning and coherent dynamics estimation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 39, no. 3, pp. 589–602,
Mar. 2017.

[17] M. Yang and Y. Jia, “Temporal dynamic appearance modeling for
online multi-person tracking,” Comput. Vis. Image Understand., vol. 153,
pp. 16–28, Dec. 2016.

[18] C. Kim, F. Li, A. Ciptadi, and J. M. Rehg, “Multiple hypothesis
tracking revisited,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 4696–4704.

[19] Y. Xiang, A. Alahi, and S. Savarese, “Learning to track: Online multi-
object tracking by decision making,” in Proc. IEEE Int. Conf. Comput.
Vis., Dec. 2015, pp. 4705–4713.

[20] W. Choi, “Near-online multi-target tracking with aggregated local
flow descriptor,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015,
pp. 3029–3037.

[21] S. Gao, Z. Han, C. Li, Q. Ye, and J. Jiao, “Real-time multipedestrian
tracking in traffic scenes via an RGB-D-based layered graph model,”
IEEE Trans. Intell. Transp. Syst., vol. 16, no. 5, pp. 2814–2825,
Oct. 2015.

[22] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and
L. Van Gool, “Robust tracking-by-detection using a detector confidence
particle filter,” in Proc. IEEE Int. Conf. Comput. Vis., Sep./Oct. 2015,
pp. 1515–1522.

[23] W. Hu, W. Li, X. Zhang, and S. Maybank, “Single and multiple
object tracking using a multi-feature joint sparse representation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 37, no. 4, pp. 816–833,
Apr. 2015.

[24] Z. Khan, T. Balch, and F. Dellaert, “MCMC data association and sparse
factorization updating for real time multitarget tracking with merged
and multiple measurements,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 28, no. 12, pp. 1960–1972, Dec. 2006.

[25] J. Xing, H. Ai, and S. Lao, “Multi-object tracking through occlusions
by local tracklets filtering and global tracklets association with detec-
tion responses,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Sep. 2009, pp. 1200–1207.

[26] L. Zhang, Y. Li, and R. Nevatia, “Global data association for multi-
object tracking using network flows,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2008, pp. 1–8.

[27] J. Berclaz, F. Fleuret, E. Turetken, and P. Fua, “Multiple object tracking
using k-shortest paths optimization,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 9, pp. 1806–1819, Sep. 2011.

[28] H. Pirsiavash, D. Ramanan, and C. C. Fowlkes, “Globally-optimal
greedy algorithms for tracking a variable number of objects,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1201–1208.

[29] B. Yang and R. Nevatia, “An online learned CRF model for multi-target
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2012,
pp. 2034–2041.

[30] A. Heili, A. López-Méndez, and J. M. Odobez, “Exploiting long-
term connectivity and visual motion in CRF-based multi-person track-
ing,” IEEE Trans. Image Process., vol. 23, no. 7, pp. 3040–3056,
Jul. 2014.

[31] L. Wen, W. Li, J. Yan, Z. Lei, D. Yi, and S. Z. Li, “Multiple target
tracking based on undirected hierarchical relation hypergraph,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 1282–1289.

[32] A. R. Zamir, A. Dehghan, and M. Shah, “GMCP-tracker: Global multi-
object tracking using generalized minimum clique graphs,” in Proc. Eur.
Conf. Comput. Vis., 2012, pp. 343–356.

[33] A. Dehghan, S. M. Assari, and M. Shah, “GMMCP tracker: Globally
optimal generalized maximum multi clique problem for multiple object
tracking,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 4091–4099.

[34] B. Yang, C. Huang, and R. Nevatia, “Learning affinities and dependen-
cies for multi-target tracking using a CRF model,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2011, pp. 1233–1240.

[35] A. Andriyenko and K. Schindler, “Multi-target tracking by continuous
energy minimization,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., Jun. 2011, pp. 1265–1272.

[36] A. Milan, K. Schindler, and S. Roth, “Detection-and trajectory-level
exclusion in multiple object tracking,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2013, pp. 3682–3689.

[37] I. Chamveha, Y. Sugano, Y. Sato, and A. Sugimoto, “Social group dis-
covery from surveillance videos: A data-driven approach with attention-
based cues,” in Proc. Brit. Mach. Vis. Conf., 2013, pp. 1–11.

[38] J. Šochman and D. C. Hogg, “Who knows who—Inverting the social
force model for finding groups,” in Proc. IEEE Int. Conf. Comput. Vis.
Workshops, Nov. 2011, pp. 830–837.

[39] Z. Qin and C. R. Shelton, “Social grouping for multi-target tracking and
head pose estimation in video,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 38, no. 10, pp. 2082–2095, Oct. 2016.

[40] L. Leal-Taixé, M. Fenzi, A. Kuznetsova, B. Rosenhahn, and S. Savarese,
“Learning an image-based motion context for multiple people track-
ing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. Workshop,
Jun. 2014, pp. 3542–3549.

[41] A. Milan, L. Leal-Taixé, K. Schindler, and I. Reid, “Joint tracking and
segmentation of multiple targets,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 5397–5406.

[42] A. Alahi, V. Ramanathan, and L. Fei-Fei, “Socially-aware large-scale
crowd forecasting,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2014, pp. 2211–2218.

[43] A. Gning, L. Mihaylova, S. Maskell, S. K. Pang, and S. Godsill, “Group
object structure and state estimation with evolving networks and monte
Carlo methods,” IEEE Trans. Signal Process., vol. 59, no. 4, pp. 1383–
1396, Apr. 2011.

[44] W. Ge, R. T. Collins, and R. B. Ruback, “Vision-
based analysis of small groups in pedestrian crowds,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 5,
pp. 1003–1016, May 2012.

[45] L. Bazzani, M. Zanotto, M. Cristani, and V. Murino, “Joint individual-
group modeling for tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 37, no. 4, pp. 746–759, Apr. 2014.

[46] A. Milan, S. Roth, and K. Schindler, “Continuous energy minimization
for multitarget tracking,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 36, no. 1, pp. 58–72, Jan. 2014.

[47] A. Treuille, S. Cooper, and Z. Popović, “Continuum crowds,” ACM
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